(Big) Data Engineering In Depth From Beginner to Professional

Mostafa Alaa Mohamed Senior Big Data Engineer ♥ MoustafaAlaa **in** Moustafa Alaa ♥ @Moustafa_alaa22 ♥ mustafa.alaa.mohamed@gmail.com

¹Big Data & Analytics Department, Epam Systems

The Definitive Guide to Big Data Engineering Tasks

Videos classification

Watching Method / Audience	Computer	Mobile/Tablet	Just listening
Developer	•		
DevOps	•		
Business	•		

Table: Video classification The green circle • means short video. The blue circle • means medium video. The red circle • means long video

Sub-Section: Fact Table

What is the fact table?

• It is the foundation of the data warehouse.

- It is the foundation of the data warehouse.
- It consists of facts and measurements of a particular business aspect and processes ex: daily revenue for a product.

- It is the foundation of the data warehouse.
- It consists of facts and measurements of a particular business aspect and processes ex: daily revenue for a product.
- It is the target of queries in most of DWH analysis and reports.

- It is the foundation of the data warehouse.
- It consists of facts and measurements of a particular business aspect and processes ex: daily revenue for a product.
- It is the target of queries in most of DWH analysis and reports.
- It contains measurements/facts and foreign keys to *dimensions table*.

- It is the foundation of the data warehouse.
- It consists of facts and measurements of a particular business aspect and processes ex: daily revenue for a product.
- It is the target of queries in most of DWH analysis and reports.
- It contains measurements/facts and foreign keys to *dimensions table*.
- It located at the center of the schema and surrounded by dimension tables.

****** "There is no point in hoisting fact tables up the flagpole unless they have been chosen to reflect urgent business priorities"

Ralph Kimball, kimballgroup.com

77

• Choose the business process.

- Choose the business process.
- Identify the grain.

- Choose the business process.
- Identify the grain.
- Identify the dimensions.

- Choose the business process.
- Identify the grain.
- Identify the dimensions.
- Identify the fact.

• The grain is the definition of what a single row in the fact table will represent or contains.

- The grain is the definition of what a single row in the fact table will represent or contains.
- The grain describes the physical event which needs to be measured.

- The grain is the definition of what a single row in the fact table will represent or contains.
- The grain describes the physical event which needs to be measured.
- Grain controls the dimensions which are available in fact.

- The grain is the definition of what a single row in the fact table will represent or contains.
- The grain describes the physical event which needs to be measured.
- Grain controls the dimensions which are available in fact.
- Grain represents the level of information we need to represent. It is not always time; it could be the physical business measurement level.

- The grain is the definition of what a single row in the fact table will represent or contains.
- The grain describes the physical event which needs to be measured.
- Grain controls the dimensions which are available in fact.
- Grain represents the level of information we need to represent. It is not always time; it could be the physical business measurement level.
- Design from the lowest possible grain.

Sub-Section: Fact Table Types

Fact Types

There are three types of fact tables:

• Transaction.

Fact Types

There are three types of fact tables:

- Transaction.
- Periodic.

Fact Types

There are three types of fact tables:

- Transaction.
- Periodic.
- Accumulated Snapshot.

• Fact grain set at a single transaction

- Fact grain set at a single transaction
- It has one row per transaction.

- Fact grain set at a single transaction
- It has one row per transaction.
- For each transaction, we add a new single record.

- Fact grain set at a single transaction
- It has one row per transaction.
- For each transaction, we add a new single record.
- The transaction fact table is known to grow very fast as the number of transactions increases.

Fact Types:Transaction Example

customer_id	trns_date	trns_time	call_type	duration
1234	2020-01-01	12:22:45.9	Incoming	29
1234	2020-01-01	12:22:45.9	Incoming	3134
1234	2020-01-02	15:22:45.0	Outgoing	890
1234	2020-01-02	15:22:45.0	International	119
1234	2020-01-03	23:22:45.0	Incoming	145
1234	2020-01-03	23:22:45.0	Outgoing	124
1234	2020-01-03	23:22:45.0	Outgoing	1200

Table: Transaction fact example of telecom calls data.

Fact Types: Periodic Fact Table

• A periodic fact table contains one row for a *group* of transactions over a period.

Fact Types: Periodic Fact Table

- A periodic fact table contains one row for a *group* of transactions over a period.
- It must be from lower granularity to higher granularity hourly, daily, monthly, and quertrly, then yearly.

Fact Types: Periodic Fact Table Example

cust_id	month_id	incoming	outgoing	international
1234	20200131	3308	2124	119

Table: Periodic fact example of telecom calls data.

• An accumulating fact table stores one row for the entire process.

- An accumulating fact table stores one row for the entire process.
- It does not accumulate time it accumulates business process.

- An accumulating fact table stores one row for the entire process.
- It does not accumulate time it accumulates business process.
- A row in an accumulating snapshot fact table summarizes the measurement events occurring at predictable steps between the beginning and the end of a process

- An accumulating fact table stores one row for the entire process.
- It does not accumulate time it accumulates business process.
- A row in an accumulating snapshot fact table summarizes the measurement events occurring at predictable steps between the beginning and the end of a process
- Accumulating Fact tables are used to show the activity of progress through a well-defined process and are most often used to research the time between milestones.

- An accumulating fact table stores one row for the entire process.
- It does not accumulate time it accumulates business process.
- A row in an accumulating snapshot fact table summarizes the measurement events occurring at predictable steps between the beginning and the end of a process
- Accumulating Fact tables are used to show the activity of progress through a well-defined process and are most often used to research the time between milestones.
- These fact tables are updated as the business process unfolds, and each milestone is completed.

• Accumulated Snapshot use cases are engaged when we need to report the entire process life-cycle.Fact Types: Accumulated Snapshot Use Cases.

- Accumulated Snapshot use cases are engaged when we need to report the entire process life-cycle.Fact Types: Accumulated Snapshot Use Cases.
- It also uses to measure the process performance life-cycle.

- Accumulated Snapshot use cases are engaged when we need to report the entire process life-cycle.Fact Types: Accumulated Snapshot Use Cases.
- It also uses to measure the process performance life-cycle.
 - Order life-cycle.

- Accumulated Snapshot use cases are engaged when we need to report the entire process life-cycle.Fact Types: Accumulated Snapshot Use Cases.
- It also uses to measure the process performance life-cycle.
 - Order life-cycle.
 - Insurance processing.

- Accumulated Snapshot use cases are engaged when we need to report the entire process life-cycle.Fact Types: Accumulated Snapshot Use Cases.
- It also uses to measure the process performance life-cycle.
 - Order life-cycle.
 - Insurance processing.
 - Hiring process.

An insurance company

• It has a fact table named: *fact_claim_processing*.

An insurance company

- It has a fact table named: *fact_claim_processing*.
- This fact represents the claim life-cycle inside the company.

An insurance company

- It has a fact table named: *fact_claim_processing*.
- This fact represents the claim life-cycle inside the company.
- It contains detail related to claim.

An insurance company

- It has a fact table named: *fact_claim_processing*.
- This fact represents the claim life-cycle inside the company.
- It contains detail related to claim.
- This fact update after each stage finished.

Example of Accumlated Snapshot: An insurance company

• It fact table named: fact_claim_processing.

Example of Accumlated Snapshot: An insurance company

- It fact table named: fact_claim_processing.
- This fact represents the claim life-cycle inside the company.

Example of Accumlated Snapshot: An insurance company

- It fact table named: fact_claim_processing.
- This fact represents the claim life-cycle inside the company.
- It contains detail related to claim.

Example of Accumlated Snapshot: An insurance company

- It fact table named: fact_claim_processing.
- This fact represents the claim life-cycle inside the company.
- It contains detail related to claim.
- This fact update after each stage finished.

Example of Accumlated Snapshot: An insurance company

- It fact table named: fact_claim_processing.
- This fact represents the claim life-cycle inside the company.
- It contains detail related to claim.
- This fact update after each stage finished.
- The requirement it to report the number of days (lag) between stages (milestone) and the claim data (starting).

One solution to implement the requirement is to use SCD.

FACT_CLAIM_PROCESSING

CLAIM_KEY CUSTOMER_KEY POLICY_KEY CLAIM_DATE INVESTIGATION_DATE REVIEW_DATE DECISION_DATE PAYMENT_DATE

One solution to implement the requirement is to use SCD.

 In this case, we will have stages and dates, and we will calculate the difference between stages and dates using complex sub-query. FACT_CLAIM_PROCESSING

CLAIM_KEY CUSTOMER_KEY POLICY_KEY CLAIM_DATE INVESTIGATION_DATE REVIEW_DATE DECISION_DATE PAYMENT_DATE

- One solution to implement the requirement is to use SCD.
- In this case, we will have stages and dates, and we will calculate the difference between stages and dates using complex sub-query.
- Another solution is to implement an accumulated snapshot fact.

FACT CLAIM PROCESSING CLAIM KEY CUSTOMER KEY POLICY KEY CLAIM_DATE INVESTIGATION DATE **REVIEW DATE** DECISION DATE PAYMENT DATE

FACT_CLAIM_PROCESSING

CLAIM_KEY

CUSTOMER_KEY

POLICY_KEY

CLAIM_DATE

INVESTIGATION_DATE

REVIEW_DATE

DECISION_DATE

PAYMENT_DATE

FACT_CLAIM_PROCESSING_ACCUM

CLAIM KEY CUSTOMER KEY POLICY KEY CLAIM DATE INVESTIGATION DATE DAY TO INVESTIGATE REVIEW DATE DAY TO REVIEW DECISION DATE DAY TO DECISION PAYMENT DATE DAY TO PAYMENT

column_name column_valu		
claim_key	123	
customer_key 5235326		
policy_key	23632623	
claim_date	2020-01-01	
nvestigation_date 2020-01-03		
day_to_investigate	2	
review_date	2020-01-07	
day_to_review	6	
decision_date 2020-01-08		
day_to_decision	7	
payment_date	2020-01-11	
day_to_payment	10	
process_completed_flag	10	

Table: Accumulated Snapshot Fact Example on Claim Process Data.

Fact Table Types: Comparison

Feature	Transaction	Periodic	Accumulating
Grain	1 row/transaction	1 row/time-period	1 row/entire event stages
Date Dimension	Lowest granularity	End-of-period granularity	Multiple date
Facts	Transaction activities	Periodic activities	Defined lifetime activities
Size	Largest	Medium	Smallest
Update	No	No	Yes, after stage finished

Table: Fact tables types comparison.

Each fact table includes facts and it has different types:

• Additive facts.

- Additive facts.
- Semi-additive facts.

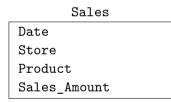
- Additive facts.
- Semi-additive facts.
- Non-additive facts.

- Additive facts.
- Semi-additive facts.
- Non-additive facts.
- Derived facts.

- Additive facts.
- Semi-additive facts.
- Non-additive facts.
- Derived facts.
- Textual facts.

- Additive facts.
- Semi-additive facts.
- Non-additive facts.
- Derived facts.
- Textual facts.
- Factless fact.

Additive facts


• It is the most flexible and useful facts.

Additive facts

- It is the most flexible and useful facts.
- Its measures can be summed across any of the dimensions associated with the fact table.

Additive facts

- It is the most flexible and useful facts.
- It can be summed across any of the dimensions associated with the fact table.

Semi-additive facts

• It can be added across some dimensions but not all also known as (partially-additive).

```
account_details
Date
Account
Current_Balance
Profit_Margin
```

- what's the total current balance for all accounts in the bank?
- What's the current balances for a given account for each day of the month does not give us any useful information?

Non-additive facts

- It can't be added for any of the dimensions.
- Non-additive facts are usually the result of ratios (percentage) or other mathematical calculations.
- **Profit_Margin** is an example non-additive.

account_details

Date

Account

Current_Balance

Profit_Margin

Derived facts

- Derived facts are created by performing a mathematical calculation on a number of other facts, and are sometimes referred to as calculated facts. Derived facts may or may not be stored inside the fact table.
- Total_sales = Qty_Sold * (Unit_price Discount)

Order_Details Order_id Item_id Order_date Qty_Sold Unit_price Discount Total_sales

Textual facts

- A textual fact consists of one or more characters such as flags and indicators.
- It should be avoided in the fact table.

Factless fact

• A fact table with only foreign keys and no facts is called a factless fact table.

References

- https://www.nuwavesolutions.com/accumulating-snapshot-facttables/
- https://www.kimballgroup.com/2008/11/fact-tables/
- https://www.1keydata.com/datawarehousing/fact-table-types.html