(Big) Data Engineering In Depth From Beginner to Professional

Mostafa Alaa Mohamed Senior Big Data Engineer ♥ MoustafaAlaa **in** Moustafa Alaa ♥ @Moustafa_alaa22 ♥ mustafa.alaa.mohamed@gmail.com

¹Big Data & Analytics Department, Epam Systems

The Definitive Guide to Big Data Engineering Tasks

Videos classification

Watching Method / Audience	Computer	Mobile/Tablet	Just listening
Developer		•	
DevOps		•	
Business		•	

Table: Video classification The green circle • means short video. The blue circle • means medium video. The red circle • means long video

Schema Types

Schema Types

• Star Schema.

Schema Types

- Star Schema.
- Snowflake Schema.

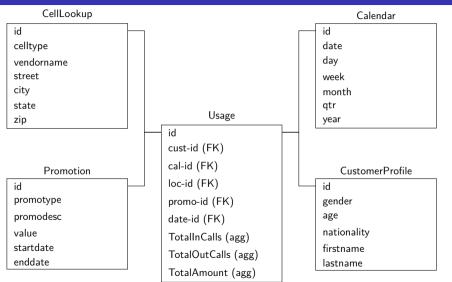
Schema Types: Star Schema

• Simplicity: It is the simplest type of DWH schemas.

- Simplicity: It is the simplest type of DWH schemas.
- **Query effectiveness**: Because of simplicity, It needs less join to query the data (It is optimized to query large dataset).

- Simplicity: It is the simplest type of DWH schemas.
- **Query effectiveness**: Because of simplicity, It needs less join to query the data (It is optimized to query large dataset).
- Data Redundancy and Large Table Size: Due to de-normalization, it has a data redundancy, and the table size is huge.

- Simplicity: It is the simplest type of DWH schemas.
- **Query effectiveness**: Because of simplicity, It needs less join to query the data (It is optimized to query large dataset).
- Data Redundancy and Large Table Size: Due to de-normalization, it has a data redundancy, and the table size is huge.
- Most used and widely supported.


• Dimensions represented by one one-dimension table.

- Dimensions represented by one one-dimension table.
- The dimension table are not joined to each other

- Dimensions represented by one one-dimension table.
- The dimension table are not joined to each other
- The fact table would contain key and measure.

- Dimensions represented by one one-dimension table.
- The dimension table are not joined to each other
- The fact table would contain key and measure.
- Data integrity is not enforced due to the de-normalized structure.

Schema Types: Star Schema Example

Schema Types: Snowflake Schema

What is Snowflake?

Figure: Snowflake Photo taken from https://earthsky.org

Moustafa Alaa

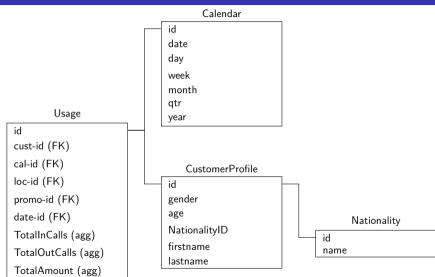
What is Snowflake?

What is Snowflake?

Snowflake Schema Characteristics

• Extension: Snowflake is an extension of the Star Schema.

Snowflake Schema Characteristics


- Extension: Snowflake is an extension of the Star Schema.
- **Normalized**: Dimension tables are normalized; this means every dimension may expand into additional tables.

Snowflake Schema Characteristics

- Extension: Snowflake is an extension of the Star Schema.
- **Normalized**: Dimension tables are normalized; this means every dimension may expand into additional tables.
- **Disk Space Efficiency**: Due to its normalization methodology, it uses less desk space, which enhances the query as we scan less data size.

- Extension: Snowflake is an extension of the Star Schema.
- **Normalized**: Dimension tables are normalized; this means every dimension may expand into additional tables.
- **Disk Space Efficiency**: Due to its normalization methodology, it uses less desk space, which enhances the query as we scan less data size.
- **Complicated**: Due to the normalization query needs to join more table in some cases to get the data which reduces the performance.

Schema Types: Snowflake schema (Example)

Star Vs. Snowflake Schema

Star	Snowflake	
Dimension represented by one-table	Dimension tables are expanded into multi-tables	
Fact table surrounded	Fact table surrounded by	
by dimension tables	Hierarchy of dimension tables	
Less join	Requires many joins	
Simple Design	Very Complex Design	
De-normalized Data structure	Normalized Data Structure	
High level of Data redundancy	Very low-level data redundancy	
Maintenance is difficult	Maintenance is easier	
Good for datamarts with simple relationships (1:1 or 1:many)	Good for core to simplify (many:many)	

Moustafa Alaa