
(Big) Data Engineering In Depth
From Beginner to Professional

Moustafa Alaa
Senior Data Engineer at Onfido, London, UK

The Definitive Guide to Big Data Engineering Tasks



Previous video recap!



Core Hadoop Concepts

Hadoop Core Components



Data Center Components

Data Center CAI-1234
RAC-A-123 RAC-A-456 RAC-B-123 RAC-B-456

Server 1

Server 2

Server 1

Server 2

Server 1

Server 2

Server 1

Server 2



Hadoop Core Concepts

– HDFS.

– Map-Reduce.

– YARN.



Hadoop Core Concepts

– HDFS.

– Map-Reduce.

– YARN.



Hadoop Core Concepts

– HDFS.

– Map-Reduce.

– YARN.



YARN
– YARN = Yet Another Resource Negotiator.

– YARN is responsible for the data-computation framework in
Hadoop.

– The fundamental idea of YARN is to split up the functionalities
of resource management and job scheduling/monitoring
into separate daemons.

– The idea is to have a global ResourceManager (RM) and
per-application ApplicationMaster (AM).

– An application is either a single job or a DAG of jobs.

1Apache Hadoop YARN
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html


YARN
– YARN = Yet Another Resource Negotiator.

– YARN is responsible for the data-computation framework in
Hadoop.

– The fundamental idea of YARN is to split up the functionalities
of resource management and job scheduling/monitoring
into separate daemons.

– The idea is to have a global ResourceManager (RM) and
per-application ApplicationMaster (AM).

– An application is either a single job or a DAG of jobs.

1Apache Hadoop YARN
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html


YARN
– YARN = Yet Another Resource Negotiator.

– YARN is responsible for the data-computation framework in
Hadoop.

– The fundamental idea of YARN is to split up the functionalities
of resource management and job scheduling/monitoring
into separate daemons.

– The idea is to have a global ResourceManager (RM) and
per-application ApplicationMaster (AM).

– An application is either a single job or a DAG of jobs.

1Apache Hadoop YARN
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html


YARN
– YARN = Yet Another Resource Negotiator.

– YARN is responsible for the data-computation framework in
Hadoop.

– The fundamental idea of YARN is to split up the functionalities
of resource management and job scheduling/monitoring
into separate daemons.

– The idea is to have a global ResourceManager (RM) and
per-application ApplicationMaster (AM).

– An application is either a single job or a DAG of jobs.

1Apache Hadoop YARN
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html


YARN
– YARN = Yet Another Resource Negotiator.

– YARN is responsible for the data-computation framework in
Hadoop.

– The fundamental idea of YARN is to split up the functionalities
of resource management and job scheduling/monitoring
into separate daemons.

– The idea is to have a global ResourceManager (RM) and
per-application ApplicationMaster (AM).

– An application is either a single job or a DAG of jobs.
1Apache Hadoop YARN

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html


YARN

YARN allows to run multiple processing engine on the
Hadoop cluster .

– Map-Reduce, Hive, and PIG.

– Spark batch, streaming, ML, and SQL.

– Impala, Mahoot, and other engines.



YARN

YARN allows to run multiple processing engine on the
Hadoop cluster .

– Map-Reduce, Hive, and PIG.

– Spark batch, streaming, ML, and SQL.

– Impala, Mahoot, and other engines.



YARN

YARN allows to run multiple processing engine on the
Hadoop cluster .

– Map-Reduce, Hive, and PIG.

– Spark batch, streaming, ML, and SQL.

– Impala, Mahoot, and other engines.



YARN
– YARN provides APIs for requesting and working with cluster

resources.

– These APIs are not typically used directly by user code.

– Users write to higher-level APIs provided by distributed
computing frameworks, Ex: (Map-reduce or Spark on yarn),
which themselves are built on YARN and hide the resource
management details from the user..

1Hadoop the defenitive guide Ch.4 P.79.
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

1Apache Hadoop YARN Ch.4 P.43.
https://www.oreilly.com/library/view/apache-hadooptm-yarn/9780133441925/

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://www.oreilly.com/library/view/apache-hadooptm-yarn/9780133441925/


YARN
– YARN provides APIs for requesting and working with cluster

resources.

– These APIs are not typically used directly by user code.

– Users write to higher-level APIs provided by distributed
computing frameworks, Ex: (Map-reduce or Spark on yarn),
which themselves are built on YARN and hide the resource
management details from the user..

1Hadoop the defenitive guide Ch.4 P.79.
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

1Apache Hadoop YARN Ch.4 P.43.
https://www.oreilly.com/library/view/apache-hadooptm-yarn/9780133441925/

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://www.oreilly.com/library/view/apache-hadooptm-yarn/9780133441925/


YARN
– YARN provides APIs for requesting and working with cluster

resources.

– These APIs are not typically used directly by user code.

– Users write to higher-level APIs provided by distributed
computing frameworks, Ex: (Map-reduce or Spark on yarn),
which themselves are built on YARN and hide the resource
management details from the user..

1Hadoop the defenitive guide Ch.4 P.79.
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

1Apache Hadoop YARN Ch.4 P.43.
https://www.oreilly.com/library/view/apache-hadooptm-yarn/9780133441925/

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://www.oreilly.com/library/view/apache-hadooptm-yarn/9780133441925/


YARN

In YARN, there are at least three actors:
▶ The clinet : The Job Submitter.

▶ Node(s) Master: the Resource Manager.

▶ Data Node(s): the Node Manager.



YARN

In YARN, there are at least three actors:
▶ The clinet : The Job Submitter.

▶ Node(s) Master: the Resource Manager.

▶ Data Node(s): the Node Manager.



YARN

In YARN, there are at least three actors:
▶ The clinet : The Job Submitter.

▶ Node(s) Master: the Resource Manager.

▶ Data Node(s): the Node Manager.



YARN Components Hierarchy

YARN

Name Node

Resource Manager

Scheduler Applications Manager

Data Node

Node Manager

Containers Application Master



YARN Daemon

YARN (The data-computation framework) consists of
– Resource Manager (long-running daemon): It is

one per cluster to manage the use of resources across the
cluster.

– Node Manager: It is running on all the nodes in the cluster to
launch and monitor containers



YARN Daemon

YARN (The data-computation framework) consists of
– Resource Manager (long-running daemon): It is

one per cluster to manage the use of resources across the
cluster.

– Node Manager: It is running on all the nodes in the cluster to
launch and monitor containers



Resource Manager

The Resource Manager has two main components
– Scheduler.

– Applications Manager.



Resource Manager

The Resource Manager has two main components
– Scheduler.

– Applications Manager.



Resource Manager

– It runs on the master node.

– It is the ultimate authority that arbitrates resources among all
the applications in the system.

– It is the global resource schedule.

– It is a single point of failure in YARN. We can acheive HA with
an active-standby configuration.



Resource Manager

– It runs on the master node.

– It is the ultimate authority that arbitrates resources among all
the applications in the system.

– It is the global resource schedule.

– It is a single point of failure in YARN. We can acheive HA with
an active-standby configuration.



Resource Manager

– It runs on the master node.

– It is the ultimate authority that arbitrates resources among all
the applications in the system.

– It is the global resource schedule.

– It is a single point of failure in YARN. We can acheive HA with
an active-standby configuration.



Resource Manager

– It runs on the master node.

– It is the ultimate authority that arbitrates resources among all
the applications in the system.

– It is the global resource schedule.

– It is a single point of failure in YARN. We can acheive HA with
an active-standby configuration.



Resource Manager - Applications Manager
– It is responsible for accepting job submissions.

– It is responsible for negotiating the first container for executing
the application specific ApplicationMaster.

– After application submission

– It first validates the application’s specifications.

– It rejects any application that requests unsatisfiable resources for its
ApplicationMaster (i.e., no node in the cluster has enough resources
to run the ApplicationMaster itself).

– It then ensures that no other application was already submitted with
the same application ID.

– It forwards the admitted application to the scheduler.



Resource Manager - Applications Manager
– It is responsible for accepting job submissions.

– It is responsible for negotiating the first container for executing
the application specific ApplicationMaster.

– After application submission

– It first validates the application’s specifications.

– It rejects any application that requests unsatisfiable resources for its
ApplicationMaster (i.e., no node in the cluster has enough resources
to run the ApplicationMaster itself).

– It then ensures that no other application was already submitted with
the same application ID.

– It forwards the admitted application to the scheduler.



Resource Manager - Applications Manager
– It is responsible for accepting job submissions.

– It is responsible for negotiating the first container for executing
the application specific ApplicationMaster.

– After application submission

– It first validates the application’s specifications.

– It rejects any application that requests unsatisfiable resources for its
ApplicationMaster (i.e., no node in the cluster has enough resources
to run the ApplicationMaster itself).

– It then ensures that no other application was already submitted with
the same application ID.

– It forwards the admitted application to the scheduler.



Resource Manager - Applications Manager
– It is responsible for accepting job submissions.

– It is responsible for negotiating the first container for executing
the application specific ApplicationMaster.

– After application submission
– It first validates the application’s specifications.

– It rejects any application that requests unsatisfiable resources for its
ApplicationMaster (i.e., no node in the cluster has enough resources
to run the ApplicationMaster itself).

– It then ensures that no other application was already submitted with
the same application ID.

– It forwards the admitted application to the scheduler.



Resource Manager - Applications Manager
– It is responsible for accepting job submissions.

– It is responsible for negotiating the first container for executing
the application specific ApplicationMaster.

– After application submission
– It first validates the application’s specifications.

– It rejects any application that requests unsatisfiable resources for its
ApplicationMaster (i.e., no node in the cluster has enough resources
to run the ApplicationMaster itself).

– It then ensures that no other application was already submitted with
the same application ID.

– It forwards the admitted application to the scheduler.



Resource Manager - Applications Manager
– It is responsible for accepting job submissions.

– It is responsible for negotiating the first container for executing
the application specific ApplicationMaster.

– After application submission
– It first validates the application’s specifications.

– It rejects any application that requests unsatisfiable resources for its
ApplicationMaster (i.e., no node in the cluster has enough resources
to run the ApplicationMaster itself).

– It then ensures that no other application was already submitted with
the same application ID.

– It forwards the admitted application to the scheduler.



Resource Manager - Applications Manager
– It is responsible for accepting job submissions.

– It is responsible for negotiating the first container for executing
the application specific ApplicationMaster.

– After application submission
– It first validates the application’s specifications.

– It rejects any application that requests unsatisfiable resources for its
ApplicationMaster (i.e., no node in the cluster has enough resources
to run the ApplicationMaster itself).

– It then ensures that no other application was already submitted with
the same application ID.

– It forwards the admitted application to the scheduler.



Resource Manager - Applications Manager

– It is responsible for recording and managing finished
applications for a while before being completely evacuated from
the ResourceManager’s memory.

– It places an ApplicationSummary in the daemon’s log file after
the application finishes.

– Finally, the ApplicationsManager keeps a cache of completed
applications long after applications finish to support users’
requests for application data



Resource Manager - Applications Manager

– It is responsible for recording and managing finished
applications for a while before being completely evacuated from
the ResourceManager’s memory.

– It places an ApplicationSummary in the daemon’s log file after
the application finishes.

– Finally, the ApplicationsManager keeps a cache of completed
applications long after applications finish to support users’
requests for application data



Resource Manager - Applications Manager

– It is responsible for recording and managing finished
applications for a while before being completely evacuated from
the ResourceManager’s memory.

– It places an ApplicationSummary in the daemon’s log file after
the application finishes.

– Finally, the ApplicationsManager keeps a cache of completed
applications long after applications finish to support users’
requests for application data



Resource Manager - Scheduler
– It is responsible for allocating resources to the various running

applications subject to familiar constraints of capacities, queues
etc.

– It performs its scheduling function based on the resource
requirements of the applications.

– It does so based on the abstract notion of a resource
containers which incorporates elements such as memory,
cpu, disk, network etc.

– The current schedulers such as the CapacityScheduler and
the FairScheduler would be some examples of plug-ins.



Resource Manager - Scheduler
– It is responsible for allocating resources to the various running

applications subject to familiar constraints of capacities, queues
etc.

– It performs its scheduling function based on the resource
requirements of the applications.

– It does so based on the abstract notion of a resource
containers which incorporates elements such as memory,
cpu, disk, network etc.

– The current schedulers such as the CapacityScheduler and
the FairScheduler would be some examples of plug-ins.



Resource Manager - Scheduler
– It is responsible for allocating resources to the various running

applications subject to familiar constraints of capacities, queues
etc.

– It performs its scheduling function based on the resource
requirements of the applications.

– It does so based on the abstract notion of a resource
containers which incorporates elements such as memory,
cpu, disk, network etc.

– The current schedulers such as the CapacityScheduler and
the FairScheduler would be some examples of plug-ins.



Resource Manager - Scheduler
– It is responsible for allocating resources to the various running

applications subject to familiar constraints of capacities, queues
etc.

– It performs its scheduling function based on the resource
requirements of the applications.

– It does so based on the abstract notion of a resource
containers which incorporates elements such as memory,
cpu, disk, network etc.

– The current schedulers such as the CapacityScheduler and
the FairScheduler would be some examples of plug-ins.



Node Manager

The Node Manager has two main components
– Containers

– Application Master (AM)



Node Manager

The Node Manager has two main components
– Containers

– Application Master (AM)



Node Manager

– It runs on the data node.

– It is YARN’s per-node “worker” agent, taking care of the
individual compute nodes in a Hadoop cluster.

– On start-up, the NodeManager registers with the
ResourceManager; it then sends heartbeats with its status and
waits for instructions.

– Its primary goal is to manage application containers assigned
to it by the ResourceManager.



Node Manager

– It runs on the data node.

– It is YARN’s per-node “worker” agent, taking care of the
individual compute nodes in a Hadoop cluster.

– On start-up, the NodeManager registers with the
ResourceManager; it then sends heartbeats with its status and
waits for instructions.

– Its primary goal is to manage application containers assigned
to it by the ResourceManager.



Node Manager

– It runs on the data node.

– It is YARN’s per-node “worker” agent, taking care of the
individual compute nodes in a Hadoop cluster.

– On start-up, the NodeManager registers with the
ResourceManager; it then sends heartbeats with its status and
waits for instructions.

– Its primary goal is to manage application containers assigned
to it by the ResourceManager.



Node Manager

– It runs on the data node.

– It is YARN’s per-node “worker” agent, taking care of the
individual compute nodes in a Hadoop cluster.

– On start-up, the NodeManager registers with the
ResourceManager; it then sends heartbeats with its status and
waits for instructions.

– Its primary goal is to manage application containers assigned
to it by the ResourceManager.



Node Manager
Node Manager is responsilble for

– Node Status Updater: Keeping up-to-date with the
ResourceManage.

– Container Manager: Overseeing application containers’
life-cycle management, and monitoring resource usage
(memory, CPU) of individual containers.

– Node Health Checker Service: Tracking node health.

– Log Handler: keeping the containers’ logs, and uploading them
onto a file-system.



Node Manager
Node Manager is responsilble for

– Node Status Updater: Keeping up-to-date with the
ResourceManage.

– Container Manager: Overseeing application containers’
life-cycle management, and monitoring resource usage
(memory, CPU) of individual containers.

– Node Health Checker Service: Tracking node health.

– Log Handler: keeping the containers’ logs, and uploading them
onto a file-system.



Node Manager
Node Manager is responsilble for

– Node Status Updater: Keeping up-to-date with the
ResourceManage.

– Container Manager: Overseeing application containers’
life-cycle management, and monitoring resource usage
(memory, CPU) of individual containers.

– Node Health Checker Service: Tracking node health.

– Log Handler: keeping the containers’ logs, and uploading them
onto a file-system.



Node Manager
Node Manager is responsilble for

– Node Status Updater: Keeping up-to-date with the
ResourceManage.

– Container Manager: Overseeing application containers’
life-cycle management, and monitoring resource usage
(memory, CPU) of individual containers.

– Node Health Checker Service: Tracking node health.

– Log Handler: keeping the containers’ logs, and uploading them
onto a file-system.



Node Manager - Containers
– A container is a collection of physical resources such as RAM,

CPU cores, and disks on a single node.

– There can be multiple containers on a single node.

– Every node in the system is considered to be composed of
multiple containers of minimum size of memory (e.g., 512 MB
or 1 GB) and CPU.

– A container executes an application-specific process with a
constrained set of resources(memory, CPU, and so on).

– RM is creating containers based on the application
requirements.

– ApplicaIons run in one or more containers.

– A container is supervised by the NodeManager and scheduled
by the ResourceManager.



Node Manager - Containers
– A container is a collection of physical resources such as RAM,

CPU cores, and disks on a single node.

– There can be multiple containers on a single node.

– Every node in the system is considered to be composed of
multiple containers of minimum size of memory (e.g., 512 MB
or 1 GB) and CPU.

– A container executes an application-specific process with a
constrained set of resources(memory, CPU, and so on).

– RM is creating containers based on the application
requirements.

– ApplicaIons run in one or more containers.

– A container is supervised by the NodeManager and scheduled
by the ResourceManager.



Node Manager - Containers
– A container is a collection of physical resources such as RAM,

CPU cores, and disks on a single node.

– There can be multiple containers on a single node.

– Every node in the system is considered to be composed of
multiple containers of minimum size of memory (e.g., 512 MB
or 1 GB) and CPU.

– A container executes an application-specific process with a
constrained set of resources(memory, CPU, and so on).

– RM is creating containers based on the application
requirements.

– ApplicaIons run in one or more containers.

– A container is supervised by the NodeManager and scheduled
by the ResourceManager.



Node Manager - Containers
– A container is a collection of physical resources such as RAM,

CPU cores, and disks on a single node.

– There can be multiple containers on a single node.

– Every node in the system is considered to be composed of
multiple containers of minimum size of memory (e.g., 512 MB
or 1 GB) and CPU.

– A container executes an application-specific process with a
constrained set of resources(memory, CPU, and so on).

– RM is creating containers based on the application
requirements.

– ApplicaIons run in one or more containers.

– A container is supervised by the NodeManager and scheduled
by the ResourceManager.



Node Manager - Containers
– A container is a collection of physical resources such as RAM,

CPU cores, and disks on a single node.

– There can be multiple containers on a single node.

– Every node in the system is considered to be composed of
multiple containers of minimum size of memory (e.g., 512 MB
or 1 GB) and CPU.

– A container executes an application-specific process with a
constrained set of resources(memory, CPU, and so on).

– RM is creating containers based on the application
requirements.

– ApplicaIons run in one or more containers.

– A container is supervised by the NodeManager and scheduled
by the ResourceManager.



Node Manager - Containers
– A container is a collection of physical resources such as RAM,

CPU cores, and disks on a single node.

– There can be multiple containers on a single node.

– Every node in the system is considered to be composed of
multiple containers of minimum size of memory (e.g., 512 MB
or 1 GB) and CPU.

– A container executes an application-specific process with a
constrained set of resources(memory, CPU, and so on).

– RM is creating containers based on the application
requirements.

– ApplicaIons run in one or more containers.

– A container is supervised by the NodeManager and scheduled
by the ResourceManager.



Node Manager - Containers
– A container is a collection of physical resources such as RAM,

CPU cores, and disks on a single node.

– There can be multiple containers on a single node.

– Every node in the system is considered to be composed of
multiple containers of minimum size of memory (e.g., 512 MB
or 1 GB) and CPU.

– A container executes an application-specific process with a
constrained set of resources(memory, CPU, and so on).

– RM is creating containers based on the application
requirements.

– ApplicaIons run in one or more containers.

– A container is supervised by the NodeManager and scheduled
by the ResourceManager.



Node Manager - Containers

– Each application starts out as an ApplicationMaster, which is
itself a container (often referred to as container 0).

– Once started, the ApplicationMaster must negotiate with the
ResourceManager for more containers.

– Container requests (and releases) can take place in a dynamic
fashion at run time. For instance, a MapReduce job may
request a certain amount of mapper containers; as they finish
their tasks, it may release them and request more reducer
containers to be started.



Node Manager - Containers

– Each application starts out as an ApplicationMaster, which is
itself a container (often referred to as container 0).

– Once started, the ApplicationMaster must negotiate with the
ResourceManager for more containers.

– Container requests (and releases) can take place in a dynamic
fashion at run time. For instance, a MapReduce job may
request a certain amount of mapper containers; as they finish
their tasks, it may release them and request more reducer
containers to be started.



Node Manager - Containers

– Each application starts out as an ApplicationMaster, which is
itself a container (often referred to as container 0).

– Once started, the ApplicationMaster must negotiate with the
ResourceManager for more containers.

– Container requests (and releases) can take place in a dynamic
fashion at run time. For instance, a MapReduce job may
request a certain amount of mapper containers; as they finish
their tasks, it may release them and request more reducer
containers to be started.



Node Manager - Application Master
– The ApplicationMaster is the process that coordinates an

application’s execution in the cluster (It runs in container 0).

– Each application has its own unique ApplicationMaster (one per
applicaIon), which is tasked with negotiating resources
(containers) from the ResourceManager and working with the
NodeManager(s) to execute and monitor the tasks.

– It will periodically send heartbeats to the ResourceManager to
affirm its health and to update the record of its resource
demands.

– It is framework/applicaIon specific.



Node Manager - Application Master
– The ApplicationMaster is the process that coordinates an

application’s execution in the cluster (It runs in container 0).

– Each application has its own unique ApplicationMaster (one per
applicaIon), which is tasked with negotiating resources
(containers) from the ResourceManager and working with the
NodeManager(s) to execute and monitor the tasks.

– It will periodically send heartbeats to the ResourceManager to
affirm its health and to update the record of its resource
demands.

– It is framework/applicaIon specific.



Node Manager - Application Master
– The ApplicationMaster is the process that coordinates an

application’s execution in the cluster (It runs in container 0).

– Each application has its own unique ApplicationMaster (one per
applicaIon), which is tasked with negotiating resources
(containers) from the ResourceManager and working with the
NodeManager(s) to execute and monitor the tasks.

– It will periodically send heartbeats to the ResourceManager to
affirm its health and to update the record of its resource
demands.

– It is framework/applicaIon specific.



Node Manager - Application Master
– The ApplicationMaster is the process that coordinates an

application’s execution in the cluster (It runs in container 0).

– Each application has its own unique ApplicationMaster (one per
applicaIon), which is tasked with negotiating resources
(containers) from the ResourceManager and working with the
NodeManager(s) to execute and monitor the tasks.

– It will periodically send heartbeats to the ResourceManager to
affirm its health and to update the record of its resource
demands.

– It is framework/applicaIon specific.



Running an Application on YARN
$ hadoop jar my-app.jar sales_data

client

Data Nodes

Name
Node

Resource
Manager

Node Manager

Node Manager

Node Manager

Node Manager

1

B1

B2

B3

A client submits the
app including the spec-
ifications to launch the
application-specific AM



Running an Application on Hadoop-YARN

client

Data Nodes

Name
Node

$ hadoop jar my-app.jar sales_data

Resource
Manager

Node Manager

Node Manager

Node Manager

Node Manager

1

B1

B2

B3

Application Master
lunch2

The RM assumes the
responsibility to start
a container which hold
AM and launch it



Running an Application on Hadoop-YARN

client

Data Nodes

Name
Node

$ hadoop jar my-app.jar sales_data

Resource
Manager

Node Manager

Node Manager

Node Manager

Node Manager

1

B1

B2

B3

Application Master
lunch2

On The AM boot up, it
registers with the RM.
This registration allows
the client program to
query the RM for de-
tails



Running an Application on Hadoop-YARN

client

Data Nodes

Name
Node

$ hadoop jar my-app.jar sales_data

Resource
Manager

Node Manager

Node Manager

Node Manager

Node Manager

1

B1

B2

B3

Application Master
lunch2

Where is
sales_data?

3



Running an Application on Hadoop-YARN

client

Data Nodes

Name
Node

$ hadoop jar my-app.jar sales_data

Resource
Manager

Node Manager

Node Manager

Node Manager

Node Manager

1

B1

B2

B3

Application Master
lunch2

Where is
sales_data?

Node (1,2,4)

3

4



Running an Application on Hadoop-YARN

client

Data Nodes

Name
Node

$ hadoop jar my-app.jar sales_data

Resource
Manager

Node Manager

Node Manager

Node Manager

Node Manager

1

B1

B2

B3

Application Master
lunch2

Where is
sales_data?

Node (1,2,4)

3

45
Resource Request:
- 1 x Node1/1GB/1 core
- 1 x Node2/1GB/1 core
- 1 x Node3/1GB/1 core

AM negotiates the
required resource
containers via the
resource-request pro-
tocol



Running an Application on Hadoop-YARN

client

Data Nodes

Name
Node

$ hadoop jar my-app.jar sales_data

Resource
Manager

Node Manager

Node Manager

Node Manager

Node Manager

1

B1

B2

B3

Application Master
lunch2

Where is
sales_data?

Node (1,2,4)

3

45
Resource Request:
- 1 x Node1/1GB/1 core
- 1 x Node2/1GB/1 core
- 1 x Node3/1GB/1 core

Task

Task

Task

HYG

6

The app executing
within the container
and provides informa-
tion (progress, status
etc) to its AM using
application-specific pro-
tocol



Running an Application on Hadoop-YARN

client

Data Nodes

Name
Node

$ hadoop jar my-app.jar sales_data

Resource
Manager

Node Manager

Node Manager

Node Manager

Node Manager

1

B1

B2

B3

Application MasterDone, Finished !

Where is
sales_data?

Node (1,2,4)

3

4

Once the app is com-
plete, the AM deregis-
ters with the RM and
shuts down, allowing
its own container to be
repurposed



Thank you for watching!



See you in the next video ©


