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YARN
– YARN = Yet Another Resource Negotiator.

– YARN is responsible for the data-computation framework in
Hadoop.

– The fundamental idea of YARN is to split up the functionalities
of resource management and job scheduling/monitoring
into separate daemons.

– The idea is to have a global ResourceManager (RM) and
per-application ApplicationMaster (AM).

– An application is either a single job or a DAG of jobs.

1Apache Hadoop YARN
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YARN
– YARN provides APIs for requesting and working with cluster

resources.

– These APIs are not typically used directly by user code.

– Users write to higher-level APIs provided by distributed
computing frameworks, Ex: (Map-reduce or Spark on yarn),
which themselves are built on YARN and hide the resource
management details from the user..

1Hadoop the defenitive guide Ch.4 P.79.
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
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YARN Daemon

YARN (The data-computation framework) consists of
– Resource Manager (long-running daemon): It is

one per cluster to manage the use of resources across the
cluster.

– Node Manager: It is running on all the nodes in the cluster to
launch and monitor containers
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– It runs on the master node.

– It is the ultimate authority that arbitrates resources among all
the applications in the system.

– It is the global resource schedule.

– It is a single point of failure in YARN. We can acheive HA with
an active-standby configuration.
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Resource Manager - Applications Manager
– It is responsible for accepting job submissions.

– It is responsible for negotiating the first container for executing
the application specific ApplicationMaster.

– After application submission

– It first validates the application’s specifications.

– It rejects any application that requests unsatisfiable resources for its
ApplicationMaster (i.e., no node in the cluster has enough resources
to run the ApplicationMaster itself).

– It then ensures that no other application was already submitted with
the same application ID.

– It forwards the admitted application to the scheduler.
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Resource Manager - Applications Manager

– It is responsible for recording and managing finished
applications for a while before being completely evacuated from
the ResourceManager’s memory.

– It places an ApplicationSummary in the daemon’s log file after
the application finishes.

– Finally, the ApplicationsManager keeps a cache of completed
applications long after applications finish to support users’
requests for application data
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Resource Manager - Scheduler
– It is responsible for allocating resources to the various running

applications subject to familiar constraints of capacities, queues
etc.

– It performs its scheduling function based on the resource
requirements of the applications.

– It does so based on the abstract notion of a resource
containers which incorporates elements such as memory,
cpu, disk, network etc.

– The current schedulers such as the CapacityScheduler and
the FairScheduler would be some examples of plug-ins.
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– It runs on the data node.

– It is YARN’s per-node “worker” agent, taking care of the
individual compute nodes in a Hadoop cluster.

– On start-up, the NodeManager registers with the
ResourceManager; it then sends heartbeats with its status and
waits for instructions.

– Its primary goal is to manage application containers assigned
to it by the ResourceManager.
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Node Manager
Node Manager is responsilble for

– Node Status Updater: Keeping up-to-date with the
ResourceManage.

– Container Manager: Overseeing application containers’
life-cycle management, and monitoring resource usage
(memory, CPU) of individual containers.

– Node Health Checker Service: Tracking node health.

– Log Handler: keeping the containers’ logs, and uploading them
onto a file-system.
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– A container is a collection of physical resources such as RAM,

CPU cores, and disks on a single node.

– There can be multiple containers on a single node.

– Every node in the system is considered to be composed of
multiple containers of minimum size of memory (e.g., 512 MB
or 1 GB) and CPU.

– A container executes an application-specific process with a
constrained set of resources(memory, CPU, and so on).

– RM is creating containers based on the application
requirements.

– ApplicaIons run in one or more containers.

– A container is supervised by the NodeManager and scheduled
by the ResourceManager.
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Node Manager - Containers

– Each application starts out as an ApplicationMaster, which is
itself a container (often referred to as container 0).

– Once started, the ApplicationMaster must negotiate with the
ResourceManager for more containers.

– Container requests (and releases) can take place in a dynamic
fashion at run time. For instance, a MapReduce job may
request a certain amount of mapper containers; as they finish
their tasks, it may release them and request more reducer
containers to be started.
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Node Manager - Application Master
– The ApplicationMaster is the process that coordinates an

application’s execution in the cluster (It runs in container 0).

– Each application has its own unique ApplicationMaster (one per
applicaIon), which is tasked with negotiating resources
(containers) from the ResourceManager and working with the
NodeManager(s) to execute and monitor the tasks.

– It will periodically send heartbeats to the ResourceManager to
affirm its health and to update the record of its resource
demands.

– It is framework/applicaIon specific.
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A client submits the
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ifications to launch the
application-specific AM
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required resource
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resource-request pro-
tocol
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application-specific pro-
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Once the app is com-
plete, the AM deregis-
ters with the RM and
shuts down, allowing
its own container to be
repurposed



Thank you for watching!



See you in the next video ©


