
(Big) Data Engineering In Depth
From Beginner to Professional

Moustafa Alaa
Senior Data Engineer

The Definitive Guide to Big Data Engineering Tasks



Previous video recap!



Hadoop Core Concepts

– HDFS.

– YARN.

– Map-Reduce.



Hadoop Core Concepts

– HDFS.

– YARN.

– Map-Reduce.



Hadoop Core Concepts

– HDFS.

– YARN.

– Map-Reduce.



Hadoop Map Reduce

Introduction To Hadoop Map Reduce API



The basic idea of MapReduce
We break this into three stages

▶ Map.

▶ Shuffle/Group (Mapper Intermediates).

▶ Reduce

1This example taken from
https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/

https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/


The basic idea of MapReduce
We break this into three stages

▶ Map.

▶ Shuffle/Group (Mapper Intermediates).

▶ Reduce

1This example taken from
https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/

https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/


The basic idea of MapReduce
We break this into three stages

▶ Map.

▶ Shuffle/Group (Mapper Intermediates).

▶ Reduce

1This example taken from
https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/

https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/


Map
We distribute our raw ingredients amongst the workers.

1This example taken from https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/

https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/


Shuffle/Group
We will organise and group the processed ingredients
into piles, so that making a sandwich becomes easy.

1This example taken from https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/

https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/


Reduce
we’ll combine the ingredients into a sandwich

1This example taken from https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/

https://reberhardt.com/cs110/summer-2018/lecture-notes/lecture-14/


Case Study Example 1

Input

Hello

Node 1

HELLO

Output

File Split

Split-1

Split-2

Node 2

Sx % n

Mgmt Box

Figure: Convert text to upper text, for example, The -> THE



Case Study Example 1

Input

Hello

Node 1

HELLO

Output

File Split

Split-1

Split-2

Node 2

???

Mgmt BoxFile System Box Processing Box



Case Study Example 2

(The,{1,1})
(next,1)
(very,1)

(back,1)
(cat,1)
(came,1)
(day,1)The cat came back

split-1

The very next day

split-2

S % n

split-1

split-2

map

map

Node 1
Node 2

(The,1)
(cat,1)
(came,1)
(back,1)

(The,1)
(very,1)
(next,1)
(day,1)

input

input

output

output

Shuffle
& Soft

(back,1)
(cat,1)
(came,1)
(day,1)

(The,{1,1})
(next,1)
(very,1)

count

count

(back,1)
(cat,1)
(came,1)
(day,1)

(The,2)
(next,1)
(very,1)

fn

fn

Node 2
Node 1

output

outputfn

fninput

input

Reduce sideMap side



Figure: Map Reduce Stages



Figure: Map Reduce Stages



Map Reduce (word count) Deep Dive

The Map-Reduce consists of three ”main” parts
– The Driver.

– The Mapper.

– The Reducer.



Map Reduce (word count) Deep Dive

The Map-Reduce consists of three ”main” parts
– The Driver.

– The Mapper.

– The Reducer.



Map Reduce (word count) Deep Dive

The Map-Reduce consists of three ”main” parts
– The Driver.

– The Mapper.

– The Reducer.



Hadoop Map Reduce API

Hadoop Map Reduce API Deep Dive



The Driver

– The code that runs on the client machine configures the job
details by creating an object from the Job class, which
implements the JobContext interface.

– It submits the job to the cluster.

– It parses job arguments to identify job parameters, for example,
input/output directories..



The Driver

– The code that runs on the client machine configures the job
details by creating an object from the Job class, which
implements the JobContext interface.

– It submits the job to the cluster.

– It parses job arguments to identify job parameters, for example,
input/output directories..



The Driver

– The code that runs on the client machine configures the job
details by creating an object from the Job class, which
implements the JobContext interface.

– It submits the job to the cluster.

– It parses job arguments to identify job parameters, for example,
input/output directories..



The Driver: Job Configuration

The Job object allows you to set configuration for your
Map-Reduce job:

– You can configure the Mapper & the Reducer classes.

– Set the Mapper input/output key & value data types.

– Set the Reducer input/output key & value data types.



The Driver: Job Configuration

The Job object allows you to set configuration for your
Map-Reduce job:

– You can configure the Mapper & the Reducer classes.

– Set the Mapper input/output key & value data types.

– Set the Reducer input/output key & value data types.



The Driver: Job Configuration

The Job object allows you to set configuration for your
Map-Reduce job:

– You can configure the Mapper & the Reducer classes.

– Set the Mapper input/output key & value data types.

– Set the Reducer input/output key & value data types.



The Driver: Job Configuration

– We can configure file input directory and output.

– We configure the output path using
FileOutputFormat.setOutputPath() to specify the
reducers’ directory to write the output data.



The Driver: Job Configuration

– We can configure file input directory and output.

– We configure the output path using
FileOutputFormat.setOutputPath() to specify the
reducers’ directory to write the output data.



The Driver: Job Configuration

– We configure the input path using
FileInputFormat.setInputPaths(), and by default, it
will read all the files in the specified directories and send them
to the mappers.

– We can use Hadoop glob patterns to read directory
patterns, for example, /warehouse/public/sales*.

– We can call FileInputFormat.addInputPath() to
multiple times by specifying a single file or directory.

1For more details, please read HTDG. Ch.3 File patterns and PathFilter
sections.



The Driver: Job Configuration

– We configure the input path using
FileInputFormat.setInputPaths(), and by default, it
will read all the files in the specified directories and send them
to the mappers.

– We can use Hadoop glob patterns to read directory
patterns, for example, /warehouse/public/sales*.

– We can call FileInputFormat.addInputPath() to
multiple times by specifying a single file or directory.

1For more details, please read HTDG. Ch.3 File patterns and PathFilter
sections.



The Driver: Job Configuration

– We configure the input path using
FileInputFormat.setInputPaths(), and by default, it
will read all the files in the specified directories and send them
to the mappers.

– We can use Hadoop glob patterns to read directory
patterns, for example, /warehouse/public/sales*.

– We can call FileInputFormat.addInputPath() to
multiple times by specifying a single file or directory.

1For more details, please read HTDG. Ch.3 File patterns and PathFilter
sections.



Hadoop Map Reduce API

Please read HTDG. Ch.3 The Java Interface



The Driver: Job Configuration

– You could set driver configurations globally using Hadoop
configurations.

– Any options not specified in the job configuration will use the
Hadoop default values.

– We use the Job object to specify the job name and check its
state..



The Driver: Job Configuration

– You could set driver configurations globally using Hadoop
configurations.

– Any options not specified in the job configuration will use the
Hadoop default values.

– We use the Job object to specify the job name and check its
state..



The Driver: Job Configuration

– You could set driver configurations globally using Hadoop
configurations.

– Any options not specified in the job configuration will use the
Hadoop default values.

– We use the Job object to specify the job name and check its
state..



The Driver: Job Configuration

– It is optional to set the mapper and reducer classes.

– Hadoop uses its default IdentityMapper and
IdentityReducer.



The Driver: Job Configuration

– It is optional to set the mapper and reducer classes.

– Hadoop uses its default IdentityMapper and
IdentityReducer.



The Driver: Job Configuration

Lunch a Map-Reduce job:
– The waitForCompletion() method in the Job class

launches the job and polls for progress. In addition, it writes the
logs and summarizing the Map-Reduce job progress and
changes.

– When the job completes successfully, the job counters are
displayed. Otherwise, the error that caused the job to fail is
logged to the console.



The Driver: Job Configuration

Lunch a Map-Reduce job:
– The waitForCompletion() method in the Job class

launches the job and polls for progress. In addition, it writes the
logs and summarizing the Map-Reduce job progress and
changes.

– When the job completes successfully, the job counters are
displayed. Otherwise, the error that caused the job to fail is
logged to the console.



InputFormat

– TheThe driver defines the InputFormat; then the
InputFormat creates a RecordReader" object that parses
the input data into key/value pairs passed to the mapper.

– For example: TextInputFormat:

– It is the default.

– It creates LineRecordReader objects.

– Key: is the line offest in the file.

– Value: is the line which terminated by ”\n”.



InputFormat

– TheThe driver defines the InputFormat; then the
InputFormat creates a RecordReader" object that parses
the input data into key/value pairs passed to the mapper.

– For example: TextInputFormat:

– It is the default.

– It creates LineRecordReader objects.

– Key: is the line offest in the file.

– Value: is the line which terminated by ”\n”.



InputFormat

– TheThe driver defines the InputFormat; then the
InputFormat creates a RecordReader" object that parses
the input data into key/value pairs passed to the mapper.

– For example: TextInputFormat:
– It is the default.

– It creates LineRecordReader objects.

– Key: is the line offest in the file.

– Value: is the line which terminated by ”\n”.



InputFormat

– TheThe driver defines the InputFormat; then the
InputFormat creates a RecordReader" object that parses
the input data into key/value pairs passed to the mapper.

– For example: TextInputFormat:
– It is the default.

– It creates LineRecordReader objects.

– Key: is the line offest in the file.

– Value: is the line which terminated by ”\n”.



InputFormat

– TheThe driver defines the InputFormat; then the
InputFormat creates a RecordReader" object that parses
the input data into key/value pairs passed to the mapper.

– For example: TextInputFormat:
– It is the default.

– It creates LineRecordReader objects.

– Key: is the line offest in the file.

– Value: is the line which terminated by ”\n”.



InputFormat

– TheThe driver defines the InputFormat; then the
InputFormat creates a RecordReader" object that parses
the input data into key/value pairs passed to the mapper.

– For example: TextInputFormat:
– It is the default.

– It creates LineRecordReader objects.

– Key: is the line offest in the file.

– Value: is the line which terminated by ”\n”.



Keys and Values

– Keys and Values in Hadoop are java Objects not
Java primitives types.

– Values are objects which implement Writable.

– Keys are objects which implement WritableComparable.



Keys and Values

– Keys and Values in Hadoop are java Objects not
Java primitives types.

– Values are objects which implement Writable.

– Keys are objects which implement WritableComparable.



Keys and Values

– Keys and Values in Hadoop are java Objects not
Java primitives types.

– Values are objects which implement Writable.

– Keys are objects which implement WritableComparable.



What is Writable?

– Writable is an interface in Hadoop.

– Writables are used for data type ”serialization” in Hadoop to
translate/serialize ”primitive java data types” to ”Hadoop data
types”, Ex: int to IntWritable and String to Text.

– Hadoop uses the Writable interface for data transfer in the
cluster and network.



What is Writable?

– Writable is an interface in Hadoop.

– Writables are used for data type ”serialization” in Hadoop to
translate/serialize ”primitive java data types” to ”Hadoop data
types”, Ex: int to IntWritable and String to Text.

– Hadoop uses the Writable interface for data transfer in the
cluster and network.



What is Writable?

– Writable is an interface in Hadoop.

– Writables are used for data type ”serialization” in Hadoop to
translate/serialize ”primitive java data types” to ”Hadoop data
types”, Ex: int to IntWritable and String to Text.

– Hadoop uses the Writable interface for data transfer in the
cluster and network.



What is WritableComparable?
– A WritableComparable is a Writable which is also

Comparable.

– We can compare two WritableComparables against each
other to determine their order, for example, we could need to
compare the order of two Text ”Apple vs. Cat or numbers
ordering” to understand the ordering mechanism.

– Obviously, the reason we have Keys to be
WritableComparable is that they are passed to the reducer
in sorted order.

– Note: All Hadoop implemented types are both Writable and
WritableComparable.



What is WritableComparable?
– A WritableComparable is a Writable which is also

Comparable.

– We can compare two WritableComparables against each
other to determine their order, for example, we could need to
compare the order of two Text ”Apple vs. Cat or numbers
ordering” to understand the ordering mechanism.

– Obviously, the reason we have Keys to be
WritableComparable is that they are passed to the reducer
in sorted order.

– Note: All Hadoop implemented types are both Writable and
WritableComparable.



What is WritableComparable?
– A WritableComparable is a Writable which is also

Comparable.

– We can compare two WritableComparables against each
other to determine their order, for example, we could need to
compare the order of two Text ”Apple vs. Cat or numbers
ordering” to understand the ordering mechanism.

– Obviously, the reason we have Keys to be
WritableComparable is that they are passed to the reducer
in sorted order.

– Note: All Hadoop implemented types are both Writable and
WritableComparable.



What is WritableComparable?
– A WritableComparable is a Writable which is also

Comparable.

– We can compare two WritableComparables against each
other to determine their order, for example, we could need to
compare the order of two Text ”Apple vs. Cat or numbers
ordering” to understand the ordering mechanism.

– Obviously, the reason we have Keys to be
WritableComparable is that they are passed to the reducer
in sorted order.

– Note: All Hadoop implemented types are both Writable and
WritableComparable.



Map Reduce (word count) Deep Dive

The Map-Reduce example consists of three main parts
– The Driver.

– The Mapper.



Map Reduce (word count) Deep Dive

The Map-Reduce example consists of three main parts
– The Driver.

– The Mapper.



The Mapper

– The mapper class deals with a single input split.

– All mapper classes must extend the Mapper base class.

– All mapper must specify the key and values for input and output.

– All mappers must override the map method and pass the key,
value, and Context.

– The Context is used to write intermediate data and all
information about the job’s configurations.



The Mapper

– The mapper class deals with a single input split.

– All mapper classes must extend the Mapper base class.

– All mapper must specify the key and values for input and output.

– All mappers must override the map method and pass the key,
value, and Context.

– The Context is used to write intermediate data and all
information about the job’s configurations.



The Mapper

– The mapper class deals with a single input split.

– All mapper classes must extend the Mapper base class.

– All mapper must specify the key and values for input and output.

– All mappers must override the map method and pass the key,
value, and Context.

– The Context is used to write intermediate data and all
information about the job’s configurations.



The Mapper

– The mapper class deals with a single input split.

– All mapper classes must extend the Mapper base class.

– All mapper must specify the key and values for input and output.

– All mappers must override the map method and pass the key,
value, and Context.

– The Context is used to write intermediate data and all
information about the job’s configurations.



The Mapper

– The mapper class deals with a single input split.

– All mapper classes must extend the Mapper base class.

– All mapper must specify the key and values for input and output.

– All mappers must override the map method and pass the key,
value, and Context.

– The Context is used to write intermediate data and all
information about the job’s configurations.



Map Reduce (word count) Deep Dive

The Map-Reduce example consists of three main parts
– The Driver.

– The Mapper.

– The Reducer.



Map Reduce (word count) Deep Dive

The Map-Reduce example consists of three main parts
– The Driver.

– The Mapper.

– The Reducer.



Map Reduce (word count) Deep Dive

The Map-Reduce example consists of three main parts
– The Driver.

– The Mapper.

– The Reducer.



The Reducer

– The Reducer receives a Key and an Iterable collection of
Writable objects. It also receives a Context object.

– All reducers classes must extend the Reducer base class.

– All mapper must specify the key and values for intermediate
input and final (or intermediate) output.

– All reducers must override the ”reduce” method and pass the
key, Iterable and ”Context”.



The Reducer

– The Reducer receives a Key and an Iterable collection of
Writable objects. It also receives a Context object.

– All reducers classes must extend the Reducer base class.

– All mapper must specify the key and values for intermediate
input and final (or intermediate) output.

– All reducers must override the ”reduce” method and pass the
key, Iterable and ”Context”.



The Reducer

– The Reducer receives a Key and an Iterable collection of
Writable objects. It also receives a Context object.

– All reducers classes must extend the Reducer base class.

– All mapper must specify the key and values for intermediate
input and final (or intermediate) output.

– All reducers must override the ”reduce” method and pass the
key, Iterable and ”Context”.



The Reducer

– The Reducer receives a Key and an Iterable collection of
Writable objects. It also receives a Context object.

– All reducers classes must extend the Reducer base class.

– All mapper must specify the key and values for intermediate
input and final (or intermediate) output.

– All reducers must override the ”reduce” method and pass the
key, Iterable and ”Context”.



Hadoop Map Reduce API

Map Reduce Demo



Thank you for watching!



See you in the next video ©


